If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+x-80=0
a = 4.9; b = 1; c = -80;
Δ = b2-4ac
Δ = 12-4·4.9·(-80)
Δ = 1569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1569}}{2*4.9}=\frac{-1-\sqrt{1569}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1569}}{2*4.9}=\frac{-1+\sqrt{1569}}{9.8} $
| 9=0.4r | | 5x-5x=-3(8x+6)-7(x-7) | | -8/7=1/2x-5/3 | | 9x+4x+x= | | 7(-4)+4y=8 | | 3(x+10)=3(x-1) | | -6(x-6)=30-5x | | -25=-24u | | 7x+2(-7+2x)=10+3x | | R=250m | | -3+y/6=-11 | | 3/5w-3/2=-5/3 | | 5x+8x=-10+8x | | 14.5=2a | | (7x+10)+(7x-26)=180 | | y+5-20(1+2)^2=-6 | | (3x+3)/4=6 | | 3(6+3x)=9x+4 | | 3/4p=5 | | -5(-3n-3)+1=-2n-35 | | y+5-20(1+2)2=-6 | | 8(-x+8)=-4(x-7) | | (7x-5)=45 | | F=12(s-30)+35 | | 35+4x=-5-7(2x+2) | | 4.9x^2+31x-50=0 | | 81=6b-3 | | -2+11x=6+8x | | 29-x=-6(1+6x) | | (3/4*12a)+(3/4*8)=31.2 | | 55=-6x | | 15x+12-3x=36+4x |